A Quadratic Diophantine Equation Involving Generalized Fibonacci Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016901" target="_blank" >RIV/62690094:18470/20:50016901 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/6/1010" target="_blank" >https://www.mdpi.com/2227-7390/8/6/1010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8061010" target="_blank" >10.3390/math8061010</a>
Alternative languages
Result language
angličtina
Original language name
A Quadratic Diophantine Equation Involving Generalized Fibonacci Numbers
Original language description
The sequence of the k-generalized Fibonacci numbers (F-n((k)))(n) is defined by the recurrence F-n((k)) = Sigma(k)(j) = 1 F-n-j((k)) beginning with the k terms 0,..., 0, 1. In this paper, we shall solve the Diophantine equation F-n((k)) = (F-m((l)))(2) + 1, in positive integers m, n, k and l.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
"Article Number: 1010"
UT code for WoS article
000550837900001
EID of the result in the Scopus database
2-s2.0-85087572684