All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE SUM OF POWERS OF TWO k-FIBONACCI NUMBERS WHICH BELONGS TO THE SEQUENCE OF k-LUCAS NUMBERS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50005614" target="_blank" >RIV/62690094:18470/16:50005614 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/downloadpdf/j/tmmp.2016.67.issue-1/tmmp-2016-0028/tmmp-2016-0028.pdf" target="_blank" >https://www.degruyter.com/downloadpdf/j/tmmp.2016.67.issue-1/tmmp-2016-0028/tmmp-2016-0028.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/tmmp-2016-0028" target="_blank" >10.1515/tmmp-2016-0028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE SUM OF POWERS OF TWO k-FIBONACCI NUMBERS WHICH BELONGS TO THE SEQUENCE OF k-LUCAS NUMBERS

  • Original language description

    Let k>0 and denote (F{k,n}){n>-1}, the k-Fibonacci sequence whose terms satisfy the recurrence relation F{k,n}=kF{k,n-1}+F{k,n-2}, with initial conditions F{k,0}=0 and F{k,1}=1. In the same way, the k-Lucas sequence (L{k,n}){n>-1} is defined by satisfying the same recurrence relation with initial values L{k,0}=2 and L{k,1}=k. These sequences was introduced by Falcon and Plaza and they showed many of its properties too. In particular, they proved that F{k,n+1}+F_k,n-1}=L{k,n}, for all k>0 and n>-1. In this paper, we shall prove that if k>0 and F{k,n+1}^s+F_{k,n-1}^s belongs to (L{k,m}){m>0} for infinitely many positive integers n, then s=1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Tatra Mountains Matematical Pulblications

  • ISSN

    1210-3195

  • e-ISSN

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    6

  • Pages from-to

    41-46

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85014728764