All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some Diophantine Problems Related to k-Fibonacci Numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016982" target="_blank" >RIV/62690094:18470/20:50016982 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/8/7/1047" target="_blank" >https://www.mdpi.com/2227-7390/8/7/1047</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8071047" target="_blank" >10.3390/math8071047</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some Diophantine Problems Related to k-Fibonacci Numbers

  • Original language description

    Let k &gt;= 1 be an integer and denote (F-k,F-n) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F-k,F-n=kF(k,n-1)+F-k,F-n-2, with initial conditions F-k,F-0=0 and F-k,F-1=1. In the same way, the k-Lucas sequence (L-k,L-n)(n) is defined by satisfying the same recursive relation with initial values L-k,L-0=2 and L-k,L-1=k. The sequences(F-k,F-n)(n &gt;= 0) and (L-k,L-n)(n &gt;= 0) were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F-k,n(2)+F-k,n+1(2)=F-k,F-2n+1 and F-k,n+1(2)-F-k,n-1(2)=kF(k,2n), for all k &gt;= 1 and n &gt;= 0. In this paper, we shall prove that if k&gt;1 and F-k,n(s)+F-k,n+1(s) is an element of(F-k,F-m)(m &gt;= 1) for infinitely many positive integers n, then s=2. Similarly, that if F-k,n+1(s)-F-k,n-1(s) is an element of(kF(k,m))(m &gt;= 1) holds for infinitely many positive integers n, then s=1 or s=2. This generalizes a Marques and Togbe result related to the case k=1. Furthermore, we shall solve the Diophantine equations F-k,F-n=L-k,L-m, F-k,F-n=F-n,F-k and L-k,L-n=L-n,L-k.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    "Article Number: 1047"

  • UT code for WoS article

    000558400200001

  • EID of the result in the Scopus database

    2-s2.0-85088459798