All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Uniform convergence rates for the approximated halfspace and projection depth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10418981" target="_blank" >RIV/00216208:11320/20:10418981 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=i9_ppNWMXR" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=i9_ppNWMXR</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1214/20-EJS1759" target="_blank" >10.1214/20-EJS1759</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Uniform convergence rates for the approximated halfspace and projection depth

  • Original language description

    The computational complexity of some depths that satisfy the projection property, such as the halfspace depth or the projection depth, is known to be high, especially for data of higher dimensionality. In such scenarios, the exact depth is frequently approximated using a randomized approach: The data are projected into a finite number of directions uniformly distributed on the unit sphere, and the minimal depth of these univariate projections is used to approximate the true depth. We provide a theoretical background for this approximation procedure. Several uniform consistency results are established, and the corresponding uniform convergence rates are provided. For elliptically symmetric distributions and the halfspace depth it is shown that the obtained uniform convergence rates are sharp. In particular, guidelines for the choice of the number of random projections in order to achieve a given precision of the depths are stated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometric aspects of mathematical statistics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Statistics

  • ISSN

    1935-7524

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    37

  • Pages from-to

    3939-3975

  • UT code for WoS article

    000587719400041

  • EID of the result in the Scopus database

    2-s2.0-85098535077