Two approaches to inner estimations of the optimal solution set in interval linear programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419306" target="_blank" >RIV/00216208:11320/20:10419306 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3396474.3396479" target="_blank" >https://doi.org/10.1145/3396474.3396479</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3396474.3396479" target="_blank" >10.1145/3396474.3396479</a>
Alternative languages
Result language
angličtina
Original language name
Two approaches to inner estimations of the optimal solution set in interval linear programming
Original language description
We consider a linear programming problem with uncertain input coefficients. The only information we have are lower and upper bounds for the uncertain values. This gives rise to the so called interval linear programming. The challenging problem here is to characterize and determine the set of all possible optimal solutions. Most of the scholars were focus on computing outer bounds for the optimal solution. Herein, we will be interested with computing inner bounds. We propose a local search algorithm and a genetic algorithm. We compare both methods numerically on random data to ascertain what is their real time complexity and quality of inner estimations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
<a href="/en/project/GA18-04735S" target="_blank" >GA18-04735S: Novel approaches for relaxation and approximation techniques in deterministic global optimization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2020 4th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence
ISBN
978-1-4503-7761-4
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
99-104
Publisher name
Association for Computing Machinery
Place of publication
New York
Event location
Thimphu, Bhutan
Event date
Apr 18, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—