Minimal representations of order types by geometric graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420196" target="_blank" >RIV/00216208:11320/20:10420196 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZtoFV3d4hd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZtoFV3d4hd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7155/jgaa.00545" target="_blank" >10.7155/jgaa.00545</a>
Alternative languages
Result language
angličtina
Original language name
Minimal representations of order types by geometric graphs
Original language description
In order to have a compact visualization of the order type of a given point set S, we are interested in geometric graphs on S with few edges that unambiguously display the order type of S. We introduce the concept of exit edges, which prevent the order type from changing under continuous motion of vertices. That is, in the geometric graph on S whose edges are the exit edges, in order to change the order type of S, at least one vertex needs to move across an exit edge. Exit edges have a natural dual characterization, which allows us to efficiently compute them and to bound their number.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Algorithms and Applications
ISSN
1526-1719
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
24
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
551-572
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85098050958