Geometric Biplane Graphs I: Maximal Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925428" target="_blank" >RIV/49777513:23520/15:43925428 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00373-015-1546-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs00373-015-1546-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-015-1546-1" target="_blank" >10.1007/s00373-015-1546-1</a>
Alternative languages
Result language
angličtina
Original language name
Geometric Biplane Graphs I: Maximal Graphs
Original language description
We study biplane graphs drawn on a finite planar point set $S$ in general position. This is the family of geometric graphs whose vertex set is $S$ and can be decomposed into two plane graphs. We show that two maximal biplane graphs-in the sense that no edge can be added while staying biplane-may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum numberof edges and the largest maximum connectivity over $n$-element point sets.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GRAPHS AND COMBINATORICS
ISSN
0911-0119
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
JP - JAPAN
Number of pages
19
Pages from-to
407-425
UT code for WoS article
000351752900007
EID of the result in the Scopus database
—