Geometric Biplane Graphs II: Graph Augmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925544" target="_blank" >RIV/49777513:23520/15:43925544 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00373-015-1547-0" target="_blank" >http://link.springer.com/article/10.1007%2Fs00373-015-1547-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-015-1547-0" target="_blank" >10.1007/s00373-015-1547-0</a>
Alternative languages
Result language
angličtina
Original language name
Geometric Biplane Graphs II: Graph Augmentation
Original language description
We study biplane graphs drawn on a finite point set S in the plane in general position. This is the family of geometric graphs whose vertex set is S and which can be decomposed into two plane graphs. We show that every sufficiently large point set admitsa 5-connected biplane graph and that there are arbitrarily large point sets that do not admit any 6-connected biplane graph. Furthermore, we show that every plane graph (other than a wheel or a fan) can be augmented into a 4-connected biplane graph. However, there are arbitrarily large plane graphs that cannot be augmented to a 5-connected biplane graph by adding pairwise noncrossing edges.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GRAPHS AND COMBINATORICS
ISSN
0911-0119
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
JP - JAPAN
Number of pages
26
Pages from-to
427-452
UT code for WoS article
000351752900008
EID of the result in the Scopus database
—