All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Disjoint Compatibility via Graph Classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00365441" target="_blank" >RIV/68407700:21240/22:00365441 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-15914-5_2" target="_blank" >http://dx.doi.org/10.1007/978-3-031-15914-5_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-15914-5_2" target="_blank" >10.1007/978-3-031-15914-5_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Disjoint Compatibility via Graph Classes

  • Original language description

    Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common Let S be a convex point set of 2n >= 10 points and let H be a family of plane drawings on S. Two plane perfect matchings M-1 and M-2 on S (which do not need to be disjoint nor compatible) are disjoint H-compatible if there exists a drawing in H which is disjoint compatible to both M-1 and M-2. In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint H-compatible. We study the diameter of this graph when H is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph-Theoretic Concepts in Computer Science

  • ISBN

    978-3-031-15913-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    13

  • Pages from-to

    16-28

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Tübingen

  • Event date

    Jun 22, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000866013700002