Disjoint Compatibility via Graph Classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00365441" target="_blank" >RIV/68407700:21240/22:00365441 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-15914-5_2" target="_blank" >http://dx.doi.org/10.1007/978-3-031-15914-5_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-15914-5_2" target="_blank" >10.1007/978-3-031-15914-5_2</a>
Alternative languages
Result language
angličtina
Original language name
Disjoint Compatibility via Graph Classes
Original language description
Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common Let S be a convex point set of 2n >= 10 points and let H be a family of plane drawings on S. Two plane perfect matchings M-1 and M-2 on S (which do not need to be disjoint nor compatible) are disjoint H-compatible if there exists a drawing in H which is disjoint compatible to both M-1 and M-2. In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint H-compatible. We study the diameter of this graph when H is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph-Theoretic Concepts in Computer Science
ISBN
978-3-031-15913-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
16-28
Publisher name
Springer, Cham
Place of publication
—
Event location
Tübingen
Event date
Jun 22, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000866013700002