On flips in planar matchings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423563" target="_blank" >RIV/00216208:11320/20:10423563 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-60440-0_17" target="_blank" >https://doi.org/10.1007/978-3-030-60440-0_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60440-0_17" target="_blank" >10.1007/978-3-030-60440-0_17</a>
Alternative languages
Result language
angličtina
Original language name
On flips in planar matchings
Original language description
In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Consider all non-crossing straight-line perfect matchings on a set of 2n points that are placed equidistantly on the unit circle. The graph Hn has those matchings as vertices, and an edge between any two matchings that differ in replacing two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, provided that the quadrilateral contains the center of the unit circle. We show that the graph Hn is connected for odd n, but has exponentially many small connected components for even n, which we characterize and count via Catalan and generalized Narayana numbers. For odd n, we also prove that the diameter of Hn is linear in n. Furthermore, we determine the minimum and maximum degree of Hn for all n, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles, and they answer several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-030-60439-4
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
213-225
Publisher name
SPRINGER
Place of publication
Neuveden
Event location
Leeds
Event date
Jun 24, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—