PREDICT-AND-RECOMPUTE CONJUGATE GRADIENT VARIANTS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420374" target="_blank" >RIV/00216208:11320/20:10420374 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IWjwpu7em" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IWjwpu7em</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1276856" target="_blank" >10.1137/19M1276856</a>
Alternative languages
Result language
angličtina
Original language name
PREDICT-AND-RECOMPUTE CONJUGATE GRADIENT VARIANTS
Original language description
The standard implementation of the conjugate gradient algorithm suffers from communication bottlenecks on parallel architectures, due primarily to the two global reductions required every iteration. In this paper, we study conjugate gradient variants which decrease the runtime per iteration by overlapping global synchronizations, and in the case of pipelined variants, matrix-vector products. Through the use of a predict-and-recompute scheme, whereby recursively updated quantities are first used as a predictor for their true values and then recomputed exactly at a later point in the iteration, these variants are observed to have convergence behavior nearly as good as the standard conjugate gradient implementation on a variety of test problems. We provide a rounding error analysis which provides insight into this observation. It is also verified experimentally that the variants studied do indeed reduce the runtime per iteration in practice and that they scale similarly to previously studied communication-hiding variants. Finally, because these variants achieve good convergence without the use of any additional input parameters, they have the potential to be used in place of the standard conjugate gradient implementation in a range of applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
"A3084"-"A3108"
UT code for WoS article
000600650100020
EID of the result in the Scopus database
2-s2.0-85094937014