Projectional skeletons and Markushevich bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420465" target="_blank" >RIV/00216208:11320/20:10420465 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=fr5Qk6ek3A" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=fr5Qk6ek3A</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/plms.12299" target="_blank" >10.1112/plms.12299</a>
Alternative languages
Result language
angličtina
Original language name
Projectional skeletons and Markushevich bases
Original language description
We prove that Banach spaces with a 1-projectional skeleton form a P-class and deduce that any such space admits a strong Markushevich basis. We provide several equivalent characterizations of spaces with a projectional skeleton and of spaces having a commutative one. We further analyze known examples of spaces with a noncommutative projectional skeleton and compare their behavior with the commutative case. Finally, we collect several open problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-00941S" target="_blank" >GA17-00941S: Topological and geometrical properties of Banach spaces and operator algebras II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the London Mathematical Society
ISSN
0024-6115
e-ISSN
—
Volume of the periodical
120
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
73
Pages from-to
514-586
UT code for WoS article
000527886300002
EID of the result in the Scopus database
2-s2.0-85080998324