Rich families and projectional skeletons in Asplund WCG spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00468148" target="_blank" >RIV/67985840:_____/17:00468148 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10366813
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.11.081" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.11.081</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.11.081" target="_blank" >10.1016/j.jmaa.2016.11.081</a>
Alternative languages
Result language
angličtina
Original language name
Rich families and projectional skeletons in Asplund WCG spaces
Original language description
We show a way of constructing projectional skeletons using the concept of rich families in Banach spaces which admit a projectional generator. Our next result is that a Banach space X is Asplund and weakly compactly generated if and only if there exists a commutative 1-projectional skeleton View the MathML source(...) on X such that View the MathML source (...) is a commutative 1-projectional skeleton on X.X.. We consider both, real and also complex, Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
448
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
1618-1632
UT code for WoS article
000403630400043
EID of the result in the Scopus database
2-s2.0-85006142758