All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The shell matters: one step synthesis of core-shell silicon nanoparticles with room temperature ultranarrow emission linewidth

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420708" target="_blank" >RIV/00216208:11320/20:10420708 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FuhalTPD44" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FuhalTPD44</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c9fd00093c" target="_blank" >10.1039/c9fd00093c</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The shell matters: one step synthesis of core-shell silicon nanoparticles with room temperature ultranarrow emission linewidth

  • Original language description

    Here we present a one-step synthesis that provides silicon nanocrystals with a thin shell composed of a ceramic-like carbonyl based compound, embedded in a porous organosilicon film. The silicon nanocrystals were synthesised from hydrogen silsesquioxane molecules, modified with organic molecules containing carbonyl groups, which were annealed at 1000 degrees C in a slightly reducing 5% H-2 : 95% Ar atmosphere. The organic character of the shell was preserved after annealing due to trapping of organic molecules inside the HSQ-derived oxide matrix that forms during the annealing. The individual silicon nanocrystals, studied by single dot spectroscopy, exhibited a significantly narrower emission peak at room temperature (lowest linewidth similar to 17 meV) compared to silicon nanocrystals embedded in a silicon oxide shell (150 meV). Their emission linewidths are even significantly narrower than those of single CdSe quantum dots (&gt;50 meV). It is hypothesized that the Si-core-thin shell structure of the nanoparticle is responsible for the unique optical properties. Its formation within one synthesis step opens new opportunities for silicon-based quantum dots. The luminescence from the produced nanocrystals covers a broad spectral range from 530-720 nm (1.7-2.3 eV) suggesting strong application potential for solar cells and LEDs, following the development of a suitable mass-fabrication protocol.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GJ18-07977Y" target="_blank" >GJ18-07977Y: Study of individual nanoparticles properties with micro-spectroscopy combined with atomic force microscopy.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Faraday Discussions

  • ISSN

    1359-6640

  • e-ISSN

  • Volume of the periodical

    222

  • Issue of the periodical within the volume

    1.11.2019

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    135-148

  • UT code for WoS article

    000547895100008

  • EID of the result in the Scopus database

    2-s2.0-85087096984