Analysing Indexability of Intrinsically High-Dimensional Data Using TriGen
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420915" target="_blank" >RIV/00216208:11320/20:10420915 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-60936-8_20" target="_blank" >https://doi.org/10.1007/978-3-030-60936-8_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60936-8_20" target="_blank" >10.1007/978-3-030-60936-8_20</a>
Alternative languages
Result language
angličtina
Original language name
Analysing Indexability of Intrinsically High-Dimensional Data Using TriGen
Original language description
The TriGen algorithm is a general approach to transform distance spaces in order to provide both exact and approximate similarity search in metric and non-metric spaces. This paper focuses on the reduction of intrinsic dimensionality using TriGen. Besides the well-known intrinsic dimensionality based on distance distribution, we inspect properties of triangles used in metric indexing (the triangularity) as well as properties of quadrilaterals used in ptolemaic indexing (the ptolemaicity). We also show how LAESA with triangle and ptolemaic filtering behaves on several datasets with respect to the proposed indicators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-01641S" target="_blank" >GA19-01641S: Contextual Similarity Search in Open Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Similarity Search and Applications. SISAP 2020.
ISBN
978-3-030-60936-8
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
261-269
Publisher name
Springer
Place of publication
Cham, Germany
Event location
Copenhagen, Denmark
Event date
Sep 30, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—