Test sets for factorization properties of modules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420931" target="_blank" >RIV/00216208:11320/20:10420931 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0KvSNcglrS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0KvSNcglrS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RSMUP/66" target="_blank" >10.4171/RSMUP/66</a>
Alternative languages
Result language
angličtina
Original language name
Test sets for factorization properties of modules
Original language description
Baer's Criterion of injectivity implies that injectivity of a module is a factorization property with respect to a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring R and on additional set-theoretic hypotheses. For R commutative noetherian of Krull dimension 0 < d < infinity, we show that the assertion 'projectivity is a factorization property with respect to a single epimorphism' is independent of ZFC + GCH. We also show that if R is any ring and there exists a strongly compact cardinal kappa > vertical bar R vertical bar, then the category of all projective modules is kappa-accessible.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Rendiconti del Seminario Matematico dell Universita di Padovo
ISSN
0041-8994
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
144
Country of publishing house
IT - ITALY
Number of pages
22
Pages from-to
217-238
UT code for WoS article
000598374000016
EID of the result in the Scopus database
2-s2.0-85097393504