UNJ-Rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421039" target="_blank" >RIV/00216208:11320/20:10421039 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Ks5p-p5Ul" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6Ks5p-p5Ul</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219498820501704" target="_blank" >10.1142/S0219498820501704</a>
Alternative languages
Result language
angličtina
Original language name
UNJ-Rings
Original language description
In analogy to the elementwise definitions of UU- and UJ-rings, a ring R is called UNJ if 1 + N(R) + J(R) = U(R). After presenting several characterizations and properties, we consider the UNJ-rings within many well-studied classes of rings. In particular, we examine Dedekind finite rings, 2-primal rings, (semi)regular rings, pi-regular rings and rings that satisfy the identity x(2) = x. Finally, we conclude this paper with group UNJ-rings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra and its Applications
ISSN
0219-4988
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
9
Country of publishing house
SG - SINGAPORE
Number of pages
11
Pages from-to
2050170
UT code for WoS article
000563009600009
EID of the result in the Scopus database
2-s2.0-85072553705