Loop conditions for strongly connected digraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421068" target="_blank" >RIV/00216208:11320/20:10421068 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1dXxz66a5h" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1dXxz66a5h</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218196720500083" target="_blank" >10.1142/S0218196720500083</a>
Alternative languages
Result language
angličtina
Original language name
Loop conditions for strongly connected digraphs
Original language description
We prove that every strongly connected (not necessarily finite) digraph of algebraic length 1, which is compatible with an operation t satisfying a non-trivial identity of the form t(...) approximate to t(...), has a loop.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-20123S" target="_blank" >GA18-20123S: Expanding the Scope of Universal Algebra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Algebra and Computation
ISSN
0218-1967
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
30
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
467-499
UT code for WoS article
000525370400002
EID of the result in the Scopus database
2-s2.0-85075864621