All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simple Floquet Theory on Time Scales

Result description

:The author proves the following theorem. Let $a(t)$ be rd-continuous and regressive on a $T$-periodic time scale $Bbb T$(with a minor restriction on $Bbb T$). Then any nontrivial solution $phi(t)$ of the first order time scale equation $x^Delta=a(t),x$ has the form $phi(t)=p(t),e_b(t,t_0)$ on $Bbb T$, where $b>0$, $p(t+2T)=p(t)$ on $Bbb T$, and $e_b(t,t_0)$ is the time scale exponential function.

Keywords

key words

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simple Floquet Theory on Time Scales

  • Original language description

    :The author proves the following theorem. Let $a(t)$ be rd-continuous and regressive on a $T$-periodic time scale $Bbb T$(with a minor restriction on $Bbb T$). Then any nontrivial solution $phi(t)$ of the first order time scale equation $x^Delta=a(t),x$ has the form $phi(t)=p(t),e_b(t,t_0)$ on $Bbb T$, where $b>0$, $p(t+2T)=p(t)$ on $Bbb T$, and $e_b(t,t_0)$ is the time scale exponential function.

  • Czech name

    Prosta Floquet Theory na Time Scales

  • Czech description

    Floquetova teorie na time scalech

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. of the Eight Internat. Conf. on Difference Equations and Applications

  • ISBN

    1-58488-536-X

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    Chapman & Hall /CRC

  • Place of publication

    Boca Raton - New York - Singapore

  • Event location

    Místo konání akce

  • Event date

    Jan 1, 2003

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article