Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421886" target="_blank" >RIV/00216208:11320/20:10421886 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=r9R0e-xEQZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=r9R0e-xEQZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anihpc.2019.06.004" target="_blank" >10.1016/j.anihpc.2019.06.004</a>
Alternative languages
Result language
angličtina
Original language name
Sobolev embeddings, rearrangement-invariant spaces and Frostman measures
Original language description
Sobolev embeddings, of arbitrary order, are considered into function spaces on domains of R-n endowed with measures whose decay on balls is dominated by a power d of their radius. Norms in arbitrary rearrangement-invariant spaces are contemplated. A comprehensive approach is proposed based on the reduction of the relevant n-dimensional embeddings to one-dimensional Hardy-type inequalities. Interestingly, the latter inequalities depend on the involved measure only through the power d. Our results allow for the detection of the optimal target space in Sobolev embeddings, for broad families of norms, in situations where customary techniques do not apply. In particular, new embeddings, with augmented target spaces, are deduced even for standard Sobolev spaces. (C) 2019 Elsevier Masson SAS. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire
ISSN
0294-1449
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
40
Pages from-to
105-144
UT code for WoS article
000510532500005
EID of the result in the Scopus database
2-s2.0-85074485591