All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Barycentric cuts through a convex body

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421999" target="_blank" >RIV/00216208:11320/20:10421999 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/opus/volltexte/2020/12220" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2020/12220</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.62" target="_blank" >10.4230/LIPIcs.SoCG.2020.62</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Barycentric cuts through a convex body

  • Original language description

    Let K be a convex body in ℝn (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K INTERSECTION h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=po is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum&apos;s question. It follows from known results that for n &gt;= 2, there are always at least three distinct barycentric cuts through the point po ELEMENT OF K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through po are guaranteed if n &gt;= 3.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-04113Y" target="_blank" >GJ19-04113Y: Advanced tools in combinatorics, topology and related areas</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020)

  • ISBN

    978-3-95977-143-6

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    1-16

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Curych (online)

  • Event date

    Jun 22, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article