All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Covering Points by Hyperplanes and Related Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453478" target="_blank" >RIV/00216208:11320/22:10453478 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.SoCG.2022.57" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2022.57</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.57" target="_blank" >10.4230/LIPIcs.SoCG.2022.57</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Covering Points by Hyperplanes and Related Problems

  • Original language description

    For a set P of n points in Rd, for any d &gt;= 2, a hyperplane h is called k-rich with respect to P if itcontains at least k points of P. Answering and generalizing a question asked by Peyman Afshani,we show that if the number of k-rich hyperplanes in Rd, d &gt;= 3, is at least Ω(nd/kα + n/k), with asufficiently large constant of proportionality and with d &lt;= α &lt; 2d - 1, then there exists a (d - 2)-flatthat contains Ω(k(2d-1-α)/(d-1)) points of P. We also present upper bound constructions that giveinstances in which the above lower bound is tight. An extension of our analysis yields similar lowerbounds for k-rich spheres.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 38th International Symposium on Computational Geometry (SoCG 2022)

  • ISBN

    978-3-95977-227-3

  • ISSN

    1868-8969

  • e-ISSN

    1868-8969

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum

  • Place of publication

    Německo

  • Event location

    Německo

  • Event date

    Jun 7, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article