All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability

Result description

We investigate the asymptotic version of the Erdos-Ko-Rado theorem for the random k-uniform hypergraph H-k(n, p). For 2 <= k(n) <= n/2, let N = (n/k) and D = (n-k/k). We show that with probability tending to 1 as n -> infinity, the largest intersecting subhypergraph of Hk( n, p) has size (1+o(1))p(n)(k)-N for any p >> n/k ln(2) (n/k) D-1. This lower bound on p is asymptotically best possible for k = Theta(n). For this range of k and p, we are able to show stability as well. A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D-1 << p << ( n/k)1(-epsilon)D(-1), the largest intersecting subhypergraph of Hk(n, p) has size Theta(ln(pD) ND-1), provided that k >> root nlnn. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in H-k(n, p), for essentially all values of p and k.

Keywords

setsgraphsnumberdiscrete structuresintersecting families

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability

  • Original language description

    We investigate the asymptotic version of the Erdos-Ko-Rado theorem for the random k-uniform hypergraph H-k(n, p). For 2 <= k(n) <= n/2, let N = (n/k) and D = (n-k/k). We show that with probability tending to 1 as n -> infinity, the largest intersecting subhypergraph of Hk( n, p) has size (1+o(1))p(n)(k)-N for any p >> n/k ln(2) (n/k) D-1. This lower bound on p is asymptotically best possible for k = Theta(n). For this range of k and p, we are able to show stability as well. A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D-1 << p << ( n/k)1(-epsilon)D(-1), the largest intersecting subhypergraph of Hk(n, p) has size Theta(ln(pD) ND-1), provided that k >> root nlnn. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in H-k(n, p), for essentially all values of p and k.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Combinatorics, Probability & Computing

  • ISSN

    0963-5483

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    406-422

  • UT code for WoS article

    000398967400004

  • EID of the result in the Scopus database

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Pure mathematics

Year of implementation

2017