All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369990" target="_blank" >RIV/00216208:11320/17:10369990 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0963548316000420" target="_blank" >http://dx.doi.org/10.1017/S0963548316000420</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0963548316000420" target="_blank" >10.1017/S0963548316000420</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Erdos-Ko-Rado for Random Hypergraphs: Asymptotics and Stability

  • Original language description

    We investigate the asymptotic version of the Erdos-Ko-Rado theorem for the random k-uniform hypergraph H-k(n, p). For 2 &lt;= k(n) &lt;= n/2, let N = (n/k) and D = (n-k/k). We show that with probability tending to 1 as n -&gt; infinity, the largest intersecting subhypergraph of Hk( n, p) has size (1+o(1))p(n)(k)-N for any p &gt;&gt; n/k ln(2) (n/k) D-1. This lower bound on p is asymptotically best possible for k = Theta(n). For this range of k and p, we are able to show stability as well. A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D-1 &lt;&lt; p &lt;&lt; ( n/k)1(-epsilon)D(-1), the largest intersecting subhypergraph of Hk(n, p) has size Theta(ln(pD) ND-1), provided that k &gt;&gt; root nlnn. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in H-k(n, p), for essentially all values of p and k.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Combinatorics, Probability &amp; Computing

  • ISSN

    0963-5483

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    406-422

  • UT code for WoS article

    000398967400004

  • EID of the result in the Scopus database