All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00422134" target="_blank" >RIV/67985840:_____/13:00422134 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TIT.2013.2270275" target="_blank" >http://dx.doi.org/10.1109/TIT.2013.2270275</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIT.2013.2270275" target="_blank" >10.1109/TIT.2013.2270275</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

  • Original language description

    We bound the minimum number of wires needed to compute any (asymptotically good) error-correcting code C : {0, 1}(Omega(n)) -> {0, 1}(n) with minimum distance Omega(n), using unbounded fan-in circuits of depth with arbitrary gates. Our main results are:1) if d = 2, then w = Theta(n(lg n/lg lg n)(2)); 2) if d = 3, then w = Theta(n lg lg n); 3) if d = 2k or d = 2k + 1 for some integer k >= 2, then w = Theta(n lambda(k)(n)), where lambda(1)(n) = inverted rightlg ninverted left perpendicular lambda(i+1)(n)= lambda(i)*(n), and the * operation gives how many times one has to iterate the function lambda(i) to reach a value at most 1 from the argument; and 4) if d = lg* n, then w = O(n). For depth d = 2, our Omega(n(lg n/lg lg n)(2)) lower bound gives the largest known lower bound for computing any linear map. The upper bounds imply that a (necessarily dense) generator matrix for our code can be written as the product of two sparse matrices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA100190902" target="_blank" >IAA100190902: Mathematical logic, complexity, and algorithms</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Information Theory

  • ISSN

    0018-9448

  • e-ISSN

  • Volume of the periodical

    59

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    6611-6627

  • UT code for WoS article

    000324573500028

  • EID of the result in the Scopus database