All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Injectivity almost everywhere for weak limits of Sobolev homeomorphisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422021" target="_blank" >RIV/00216208:11320/20:10422021 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-mwXl7s2m0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-mwXl7s2m0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2020.108658" target="_blank" >10.1016/j.jfa.2020.108658</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Injectivity almost everywhere for weak limits of Sobolev homeomorphisms

  • Original language description

    Let Omega subset of R-n be an open set and let f is an element of W-1,W-p(Omega, R-n) be a weak (sequential) limit of Sobolev homeomorphisms. Then f is injective almost everywhere for p &gt; n - 1 both in the image and in the domain. For p &lt;= n - 1 we construct a strong limit of homeomorphisms such that the preimage of a point is a continuum for every point in a set of positive measure in the image and the topological image of a point is a continuum for every point in a set of positive measure in the domain. (C) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-07996S" target="_blank" >GA18-07996S: Geometric and Harmonic Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    279

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    108658

  • UT code for WoS article

    000559623200018

  • EID of the result in the Scopus database

    2-s2.0-85087302905