Injectivity almost everywhere for weak limits of Sobolev homeomorphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422021" target="_blank" >RIV/00216208:11320/20:10422021 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-mwXl7s2m0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-mwXl7s2m0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2020.108658" target="_blank" >10.1016/j.jfa.2020.108658</a>
Alternative languages
Result language
angličtina
Original language name
Injectivity almost everywhere for weak limits of Sobolev homeomorphisms
Original language description
Let Omega subset of R-n be an open set and let f is an element of W-1,W-p(Omega, R-n) be a weak (sequential) limit of Sobolev homeomorphisms. Then f is injective almost everywhere for p > n - 1 both in the image and in the domain. For p <= n - 1 we construct a strong limit of homeomorphisms such that the preimage of a point is a continuum for every point in a set of positive measure in the image and the topological image of a point is a continuum for every point in a set of positive measure in the domain. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-07996S" target="_blank" >GA18-07996S: Geometric and Harmonic Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
279
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
108658
UT code for WoS article
000559623200018
EID of the result in the Scopus database
2-s2.0-85087302905