Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014879" target="_blank" >RIV/62690094:18470/18:50014879 - isvavai.cz</a>
Result on the web
<a href="http://www.karlin.mff.cuni.cz/kma-preprints/2016-pap/2016-522.pdf" target="_blank" >http://www.karlin.mff.cuni.cz/kma-preprints/2016-pap/2016-522.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2018.04.017" target="_blank" >10.1016/j.aim.2018.04.017</a>
Alternative languages
Result language
angličtina
Original language name
Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian
Original language description
Let $Omega subset R^{n}$, $n ge 4$, be a domain and $1leq p < [n/2]$, where $[a]$ stands for the integer part of $a$. We construct a homeomorphism $f in W^{1,p}((-1,1)^{n}, R^n)$ such that $J_{f} = det Df > 0$ on a set of positive measure and $J_{f}<0$ on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) $f_{k}$ such that $f_{k} to f$ in $W^{1,p}$.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
331
Issue of the periodical within the volume
Jun
Country of publishing house
US - UNITED STATES
Number of pages
82
Pages from-to
748-829
UT code for WoS article
000434747900018
EID of the result in the Scopus database
—