All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014879" target="_blank" >RIV/62690094:18470/18:50014879 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.karlin.mff.cuni.cz/kma-preprints/2016-pap/2016-522.pdf" target="_blank" >http://www.karlin.mff.cuni.cz/kma-preprints/2016-pap/2016-522.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2018.04.017" target="_blank" >10.1016/j.aim.2018.04.017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian

  • Original language description

    Let $Omega subset R^{n}$, $n ge 4$, be a domain and $1leq p &lt; [n/2]$, where $[a]$ stands for the integer part of $a$. We construct a homeomorphism $f in W^{1,p}((-1,1)^{n}, R^n)$ such that $J_{f} = det Df &gt; 0$ on a set of positive measure and $J_{f}&lt;0$ on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) $f_{k}$ such that $f_{k} to f$ in $W^{1,p}$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    331

  • Issue of the periodical within the volume

    Jun

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    82

  • Pages from-to

    748-829

  • UT code for WoS article

    000434747900018

  • EID of the result in the Scopus database