All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Borel complexity up to the equivalence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422270" target="_blank" >RIV/00216208:11320/20:10422270 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WeiNLHP540" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WeiNLHP540</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2019.107042" target="_blank" >10.1016/j.topol.2019.107042</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Borel complexity up to the equivalence

  • Original language description

    We say that two classes of topological spaces are equivalent if each member of one class has a homeomorphic copy in the other class and vice versa. Usually when the Borel complexity of a class of metrizable compacta is considered, the class is realized as the subset of the hyperspace K([0, 1](omega)) containing all homeomorphic copies of members of the given class. We are rather interested in the lowest possible complexity among all equivalent realizations of the given class in the hyperspace. We recall that to every analytic subset of K([0,1](omega)) there exists an equivalent G(delta) subset. Then we show that up to the equivalence open subsets of the hyperspace K([0, 1](omega)) correspond to countably many classes of metrizable compacta. Finally we use the structure of open subsets up to equivalence to prove that to every F-sigma subset of K((0, 1](omega)) there exists an equivalent closed subset. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Volume of the periodical

    270

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    107042

  • UT code for WoS article

    000514019400017

  • EID of the result in the Scopus database

    2-s2.0-85076909884