The complexity of homeomorphism relations on some classes of compacta with bounded topological dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475476" target="_blank" >RIV/00216208:11320/23:10475476 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e1-6DJbItm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=e1-6DJbItm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm164-8-2023" target="_blank" >10.4064/fm164-8-2023</a>
Alternative languages
Result language
angličtina
Original language name
The complexity of homeomorphism relations on some classes of compacta with bounded topological dimension
Original language description
We are dealing with the complexity of the homeomorphism relation onsome classes of metrizable compacta from the viewpoint of invariant descriptive set theory.We prove that the homeomorphism relation for absolute retracts in the plane is Borelbireducible with the isomorphism relation for countable graphs. In order to stress thesharpness of this result, we prove that neither the homeomorphism relation for locallyconnected continua in the plane nor the homeomorphism relation for absolute retracts in R3is Borel reducible to the isomorphism relation for countable graphs.We also improve recentresults of Chang and Gao by constructing a Borel reduction from both the homeomorphismrelation for compact subsets of Rn and the ambient homeomorphism relation for compactsubsets of [0, 1]n to the homeomorphism relation for n-dimensional continua in [0, 1]n+1.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
1730-6329
Volume of the periodical
263
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
22
Pages from-to
1-22
UT code for WoS article
001080446500001
EID of the result in the Scopus database
—