All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Intersection patterns of planar sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422276" target="_blank" >RIV/00216208:11320/20:10422276 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vQyQAB5B4u" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vQyQAB5B4u</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-020-00205-z" target="_blank" >10.1007/s00454-020-00205-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Intersection patterns of planar sets

  • Original language description

    Let A = {A(1) , ... , A(n)} be a family of sets in the plane. For 0 &lt;= i &lt; n, denote by f(i) the number of subsets sigma of {1, ... , n} of cardinality i + 1 that satisfy boolean AND(i is an element of sigma) A(i) not equal theta. Let k &gt;= 2 be an integer. We prove that if each k-wise and (k+1)-wise intersection of sets from A is empty, or a single point, or both open and path-connected, then f(k+1) = 0 implies f(k) &lt;= cf(k-1) for some positive constant c depending only on k. Similarly, let b &gt;= 2, k &gt; 2b be integers. We prove that if each k-wise or (k+1)-wise intersection of sets from A has at most b path-connected components, which all are open, then f(k+1) = 0 implies f(k) &lt;= cf(k-1) for some positive constant c depending only on b and k. These results also extend to two-dimensional compact surfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    304-323

  • UT code for WoS article

    000537329400001

  • EID of the result in the Scopus database

    2-s2.0-85085896962