Bounding Radon number via Betti numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422349" target="_blank" >RIV/00216208:11320/20:10422349 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.SoCG.2020.61" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2020.61</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.61" target="_blank" >10.4230/LIPIcs.SoCG.2020.61</a>
Alternative languages
Result language
angličtina
Original language name
Bounding Radon number via Betti numbers
Original language description
We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ1 coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF17_050%2F0008466" target="_blank" >EF17_050/0008466: Improvement of internationalization in the field of research and development at Charles University, through the support of quality projects MSCA-IF</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020)
ISBN
978-3-95977-143-6
ISSN
1868-8969
e-ISSN
—
Number of pages
13
Pages from-to
1-13
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Germany
Event location
Curych (online)
Event date
Jun 22, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—