Bounding Helly numbers via Betti numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368790" target="_blank" >RIV/00216208:11320/17:10368790 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-44479-6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-44479-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-44479-6" target="_blank" >10.1007/978-3-319-44479-6</a>
Alternative languages
Result language
angličtina
Original language name
Bounding Helly numbers via Betti numbers
Original language description
We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of ℝd such that β i(intersection of G)<=b for any proper subset G of F and every 0 <= i <= ceil(d/2)- 1 then F has Helly number at most h(b, d). Here β i denotes the reduced ℤ2 -Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach .
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
A Journey Through Discrete Mathematics
ISBN
978-3-319-44479-6
Number of pages of the result
41
Pages from-to
407-447
Number of pages of the book
810
Publisher name
Springer International Publishing
Place of publication
Cham
UT code for WoS chapter
—