All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounding Helly numbers via Betti numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368790" target="_blank" >RIV/00216208:11320/17:10368790 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-44479-6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-44479-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-44479-6" target="_blank" >10.1007/978-3-319-44479-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounding Helly numbers via Betti numbers

  • Original language description

    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of ℝd such that β i(intersection of G)&lt;=b for any proper subset G of F and every 0 &lt;= i &lt;= ceil(d/2)- 1 then F has Helly number at most h(b, d). Here β i denotes the reduced ℤ2 -Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach .

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    A Journey Through Discrete Mathematics

  • ISBN

    978-3-319-44479-6

  • Number of pages of the result

    41

  • Pages from-to

    407-447

  • Number of pages of the book

    810

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • UT code for WoS chapter