All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Helly Numbers of Exponential Lattices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473478" target="_blank" >RIV/00216208:11320/23:10473478 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8" target="_blank" >https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2023.8" target="_blank" >10.4230/LIPIcs.SoCG.2023.8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Helly Numbers of Exponential Lattices

  • Original language description

    Given a set S SUBSET OF OR EQUAL TO   ℝ2, define the Helly number of S, denoted by H(S), as the smallest positive integer N, if it exists, for which the following statement is true: for any finite family ℱ of convex sets in ℝ2 such that the intersection of any N or fewer members of ℱ contains at least one point of S, there is a point of S common to all members of ℱ. We prove that the Helly numbers of exponential lattices {αn : n ELEMENT OF ℕo}2 are finite for every α &gt; 1 and we determine their exact values in some instances. In particular, we obtain H({2n : n ELEMENT OF ℕo}2) = 5, solving a problem posed by Dillon (2021). For real numbers α, β &gt; 1, we also fully characterize exponential lattices L(α,β) = {αn : n ELEMENT OF ℕo} x {βn : n ELEMENT OF ℕo} with finite Helly numbers by showing that H(L(α,β)) is finite if and only if log_α(β) is rational.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    39th International Symposium on Computational Geometry (SoCG 2023)

  • ISBN

    978-3-95977-273-0

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    1-16

  • Publisher name

    Neuveden

  • Place of publication

    USA

  • Event location

    Dallas

  • Event date

    Jun 12, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article