On Helly Numbers of Exponential Lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473478" target="_blank" >RIV/00216208:11320/23:10473478 - isvavai.cz</a>
Result on the web
<a href="https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8" target="_blank" >https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2023.8" target="_blank" >10.4230/LIPIcs.SoCG.2023.8</a>
Alternative languages
Result language
angličtina
Original language name
On Helly Numbers of Exponential Lattices
Original language description
Given a set S SUBSET OF OR EQUAL TO ℝ2, define the Helly number of S, denoted by H(S), as the smallest positive integer N, if it exists, for which the following statement is true: for any finite family ℱ of convex sets in ℝ2 such that the intersection of any N or fewer members of ℱ contains at least one point of S, there is a point of S common to all members of ℱ. We prove that the Helly numbers of exponential lattices {αn : n ELEMENT OF ℕo}2 are finite for every α > 1 and we determine their exact values in some instances. In particular, we obtain H({2n : n ELEMENT OF ℕo}2) = 5, solving a problem posed by Dillon (2021). For real numbers α, β > 1, we also fully characterize exponential lattices L(α,β) = {αn : n ELEMENT OF ℕo} x {βn : n ELEMENT OF ℕo} with finite Helly numbers by showing that H(L(α,β)) is finite if and only if log_α(β) is rational.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-32817S" target="_blank" >GA21-32817S: Algorithmic, structural and complexity aspects of geometric configurations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
39th International Symposium on Computational Geometry (SoCG 2023)
ISBN
978-3-95977-273-0
ISSN
1868-8969
e-ISSN
—
Number of pages
16
Pages from-to
1-16
Publisher name
Neuveden
Place of publication
USA
Event location
Dallas
Event date
Jun 12, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—