A fractional Helly theorem for convex lattice sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F03%3A00002321" target="_blank" >RIV/00216208:11320/03:00002321 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A fractional Helly theorem for convex lattice sets
Original language description
It is shown that the fractional Helly number for convex lattice sets in R^d is d+1, in contrast to the Helly number which is known to be 2^d.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LN00A056" target="_blank" >LN00A056: Institute of Theoretical Computer Science (Center of Young Science)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
174
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
227-235
UT code for WoS article
—
EID of the result in the Scopus database
—