Vertex Deletion into Bipartite Permutation Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422370" target="_blank" >RIV/00216208:11320/20:10422370 - isvavai.cz</a>
Result on the web
<a href="https://drops.dagstuhl.de/opus/volltexte/2020/13308/pdf/LIPIcs-IPEC-2020-5.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2020/13308/pdf/LIPIcs-IPEC-2020-5.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2020.5" target="_blank" >10.4230/LIPIcs.IPEC.2020.5</a>
Alternative languages
Result language
angličtina
Original language name
Vertex Deletion into Bipartite Permutation Graphs
Original language description
A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ????1 and ????1, one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP-complete by the classical result of Lewis and Yannakakis [John M. Lewis and Mihalis Yannakakis, 1980]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time f(k)n^O(1), and also give a polynomial-time 9-approximation algorithm.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
15th International Symposium on Parameterized and Exact Computation (IPEC 2020)
ISBN
978-3-95977-172-6
ISSN
1868-8969
e-ISSN
—
Number of pages
16
Pages from-to
1-16
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Germany
Event location
Hong Kong
Event date
Dec 14, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—