All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vertex Deletion into Bipartite Permutation Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422370" target="_blank" >RIV/00216208:11320/20:10422370 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/opus/volltexte/2020/13308/pdf/LIPIcs-IPEC-2020-5.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2020/13308/pdf/LIPIcs-IPEC-2020-5.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2020.5" target="_blank" >10.4230/LIPIcs.IPEC.2020.5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vertex Deletion into Bipartite Permutation Graphs

  • Original language description

    A permutation graph can be defined as an intersection graph of segments whose endpoints lie on two parallel lines ????1 and ????1, one on each. A bipartite permutation graph is a permutation graph which is bipartite. In this paper we study the parameterized complexity of the bipartite permutation vertex deletion problem, which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite permutation graph. This problem is NP-complete by the classical result of Lewis and Yannakakis [John M. Lewis and Mihalis Yannakakis, 1980]. We analyze the structure of the so-called almost bipartite permutation graphs which may contain holes (large induced cycles) in contrast to bipartite permutation graphs. We exploit the structural properties of the shortest hole in a such graph. We use it to obtain an algorithm for the bipartite permutation vertex deletion problem with running time f(k)n^O(1), and also give a polynomial-time 9-approximation algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    15th International Symposium on Parameterized and Exact Computation (IPEC 2020)

  • ISBN

    978-3-95977-172-6

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    1-16

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Hong Kong

  • Event date

    Dec 14, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article