All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Clique-Width: Harnessing the Power of Atoms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422372" target="_blank" >RIV/00216208:11320/20:10422372 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-60440-0_10" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-60440-0_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-60440-0_10" target="_blank" >10.1007/978-3-030-60440-0_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Clique-Width: Harnessing the Power of Atoms

  • Original language description

    Many NP-complete graph problems are polynomial-time solvable on graph classes of bounded clique-width. Several of these problems are polynomial-time solvable on a hereditary graph class  if they are so on the atoms (graphs with no clique cut-set) of  . Hence, we initiate a systematic study into boundedness of clique-width of atoms of hereditary graph classes. A graph G is H-free if H is not an induced subgraph of G, and it is (????1,????2) -free if it is both ????1 -free and ????2 -free. A class of H-free graphs has bounded clique-width if and only if its atoms have this property. This is no longer true for (????1,????2) -free graphs, as evidenced by one known example. We prove the existence of another such pair (????1,????2) and classify the boundedness of clique-width on (????1,????2) -free atoms for all but 18 cases.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph-Theoretic Concepts in Computer Science. WG 2020.

  • ISBN

    978-3-030-60439-4

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    119-133

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Leeds, Great Brittain

  • Event date

    Jun 24, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article