Clique-width: Harnessing the power of atoms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473967" target="_blank" >RIV/00216208:11320/23:10473967 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nhNr0cl5BW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nhNr0cl5BW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.23000" target="_blank" >10.1002/jgt.23000</a>
Alternative languages
Result language
angličtina
Original language name
Clique-width: Harnessing the power of atoms
Original language description
Many NP-complete graph problems are polynomial-time solvable on graph classes of bounded clique-width. Several of these problems are polynomial-time solvable on a hereditary graph class G if they are so on the atoms (graphs with no clique cut-set) of G. Hence, we initiate a systematic study into boundedness of clique-width of atoms of hereditary graph classes. A graph G is H-free if H is not an induced subgraph of G, and it is (H1,H2)-free if it is both H1-free and H2-free. A class of H-free graphs has bounded clique-width if and only if its atoms have this property. This is no longer true for (H1,H2)-free graphs, as evidenced by one known example. We prove the existence of another such pair (H1,H2) and classify the boundedness of clique-width on (H1,H2)-free atoms for all but 18 cases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-09142S" target="_blank" >GA17-09142S: Modern algorithms: New challenges of complex data sets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
1097-0118
Volume of the periodical
104
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
42
Pages from-to
769-810
UT code for WoS article
001025157100001
EID of the result in the Scopus database
2-s2.0-85164725790