All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Localized Surface Plasmon Resonances of Simple Tunable Plasmonic Nanostructures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422725" target="_blank" >RIV/00216208:11320/20:10422725 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-U7R1uG33T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-U7R1uG33T</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11468-019-01019-3" target="_blank" >10.1007/s11468-019-01019-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Localized Surface Plasmon Resonances of Simple Tunable Plasmonic Nanostructures

  • Original language description

    We derive and present systematic relationships between the analytical formulas for calculation of the localized surface plasmon resonances (LSPR) of some plasmonic nanostructures which we have categorized as simple. These relationships, including some new formulas, are summarized in a tree diagram which highlights the core-shell plasmons as the generators of solid and cavity plasmons. In addition, we show that the LSPR of complex structures can be reduced to that of simpler ones, using the LSPR of a nanorice as a case study, in the dipole limit. All the formulas were derived using a combination of the Drude model, the Rayleigh approximation, and the Frohlich condition. The formulas are handy and they are in good agreement with the results of the plasmon hybridization theory. The formulas also account for dielectric effects, which provide versatility in the tuning of the LSPR of the nanostructures. A simplified model of plasmon hybridization is presented, allowing us to investigate the weak-coupling regimes of solid and cavity plasmons in the core-shell nanostructures we have studied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    <a href="/en/project/GA17-22160S" target="_blank" >GA17-22160S: Quantum theory of excitation energy transfer and advanced optical spectroscopy: from small dye molecules to light-harvesting complexes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasmonics

  • ISSN

    1557-1955

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    189-200

  • UT code for WoS article

    000511578000021

  • EID of the result in the Scopus database

    2-s2.0-85072052771