All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plasmonic Enhancement and Polarization Dependence of Nonlinear Upconversion Emissions from Single Gold Nanorod@SiO2@CaF2:Yb3+,Er3+ Hybrid Core-Shell-Satellite Nanostructures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU121165" target="_blank" >RIV/00216305:26620/16:PU121165 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/lsa/journal/v6/n5/full/lsa2016217a.html" target="_blank" >https://www.nature.com/lsa/journal/v6/n5/full/lsa2016217a.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/lsa.2016.217" target="_blank" >10.1038/lsa.2016.217</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plasmonic Enhancement and Polarization Dependence of Nonlinear Upconversion Emissions from Single Gold Nanorod@SiO2@CaF2:Yb3+,Er3+ Hybrid Core-Shell-Satellite Nanostructures

  • Original language description

    Lanthanide-doped upconversion nanocrystals (UCNCs) have recently become an attractive nonlinear fluorescence material for use in bioimaging because of their tunable spectral characteristics and exceptional photostability. Plasmonic materials are often introduced into the vicinity of UCNCs to increase their emission intensity by means of enlarging the absorption cross-section and accelerating the radiative decay rate. Moreover, plasmonic nanostructures (e.g., gold nanorods, GNRs) can also influence the polarization state of the UC fluorescence - an effect that is of fundamental importance for fluorescence polarization-based imaging methods that has not been discussed previously. To study this effect, we synthesized GNR@SiO2@CaF2:Yb3+,Er3+ hybrid core-shell-satellite nanostructures with precise control over the thickness of the SiO2 shell. We evaluated the shell thickness-dependent plasmonic enhancement of the emission intensity in ensemble and studied the plasmonic modulation of the emission polarization at the single-particle level. The hybrid plasmonic UC nanostructures with an optimal shell thickness exhibit an improved bioimaging performance compared with bare UCNCs, and we observed a polarized nature of the light at both UC emission bands, which stems from the relationship between the excitation polarization and GNR orientation. We used electrodynamic simulations combined with Förster resonance energy transfer theory to fully explain the observed effect. Our results provide extensive insights into how the coherent interaction between the emission dipoles of UCNCs and the plasmonic dipoles of the GNR determines the emission polarization state in various situations and thus open the way to the accurate control of the UC emission anisotropy for a wide range of bioimaging and biosensing applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Light: Science and Applications

  • ISSN

    2047-7538

  • e-ISSN

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CN - CHINA

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000402396600001

  • EID of the result in the Scopus database

    2-s2.0-85028939959