Controlling the domain structure of ferroelectric nanoparticles using tunable shells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422891" target="_blank" >RIV/00216208:11320/20:10422891 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=blgoIKm5Ey" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=blgoIKm5Ey</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2019.11.012" target="_blank" >10.1016/j.actamat.2019.11.012</a>
Alternative languages
Result language
angličtina
Original language name
Controlling the domain structure of ferroelectric nanoparticles using tunable shells
Original language description
The possibility of controlling the domain structure in spherical nanoparticles of uniaxial and multiaxial ferroelectrics using a shell with tunable dielectric properties is studied in the framework of Landau-Ginzburg-Devonshire theory. Finite element modeling and analytical calculations are performed for Sn2P2S6 and BaTiO3 nanoparticles covered with polymer, temperature dependent isotropic paraelectric strontium titanate, or anisotropic liquid crystal shells with a strongly temperature dependent dielectric permittivity tensor. It appeared that the "tunable" paraelectric shell with a temperature dependent high dielectric permittivity (similar to 300 - 3000) provides much more efficient screening of the nanoparticle polarization than the polymer shell with a much smaller (similar to 10) temperature-independent permittivity. The tunable dielectric anisotropy of the liquid crystal shell (similar to 1 - 100) adds a new level of functionality for the control of ferroelectric domains morphology (including a single-domain state, domain stripes and cylinders, meandering and labyrinthine domains, and polarization flux-closure domains and vortexes) in comparison with isotropic paraelectric and polymer shells. The obtained results indicate the opportunities to control the domain structure morphology of ferroelectric nanoparticles covered with tunable shells, which can lead to the generation of new ferroelectric memory and advanced cryptographic materials. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Volume of the periodical
183
Issue of the periodical within the volume
Nov
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
36-50
UT code for WoS article
000506465100004
EID of the result in the Scopus database
2-s2.0-85074895464