Flexo-elastic control factors of domain morphology in core-shell ferroelectric nanoparticles: Soft and rigid shells
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439571" target="_blank" >RIV/00216208:11320/21:10439571 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CN7.KAUVZ_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CN7.KAUVZ_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2021.116889" target="_blank" >10.1016/j.actamat.2021.116889</a>
Alternative languages
Result language
angličtina
Original language name
Flexo-elastic control factors of domain morphology in core-shell ferroelectric nanoparticles: Soft and rigid shells
Original language description
Within the framework of the Landau-Ginzburg-Devonshire approach we explore the impact of elastic anisotropy, electrostriction, flexoelectric couplings, and mismatch strain on the domain structure morphology in ferroelectric core-shell nanoparticles of spherical shape. We perform finite element modelling (FEM) for multiaxial ferroelectric nanoparticle cores covered with an elastically-isotropic soft or elastically-anisotropic rigid paraelectric shell, with and without mismatch strains. In the case of a core covered with a soft shell , the FEM results show that at room temperature a single polarization vortex with a dipolar kernel can be stable if the electrostriction coupling is relatively weak. With increasing anisotropic electrostriction coupling, the vortex disappears and is replaced by complex flux-closure structures. In contrast to this, FEM performed for a core covered with a rigid shell shows that, at room temperature, the anisotropic elastic properties of the shell can stabilize vortex-like structures with three flux-closure domains. The flexoelectric coupling leads to a noticeable curling of the flux-closure domain walls. A mismatch strain compensates the curling of the flux-closure domains in the core confined by the elastically-anisotropic rigid shell. Our analysis of the configuration of the polarization reveals different types of topological defects, namely Bloch point structures and Ising lines. Furthermore, we study the influence of the core radius on the temperature behavior of domain structure morphology, polarization value, and phase transition temperatures, and derive approximate analytical expressions to analyze the influence of the elastic properties of the shell as well as mismatch strain on the phase diagrams. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Volume of the periodical
212
Issue of the periodical within the volume
14 April 2021
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
116889
UT code for WoS article
000657756300004
EID of the result in the Scopus database
2-s2.0-85105694553