All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flexo-elastic control factors of domain morphology in core-shell ferroelectric nanoparticles: Soft and rigid shells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439571" target="_blank" >RIV/00216208:11320/21:10439571 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CN7.KAUVZ_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CN7.KAUVZ_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.actamat.2021.116889" target="_blank" >10.1016/j.actamat.2021.116889</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flexo-elastic control factors of domain morphology in core-shell ferroelectric nanoparticles: Soft and rigid shells

  • Original language description

    Within the framework of the Landau-Ginzburg-Devonshire approach we explore the impact of elastic anisotropy, electrostriction, flexoelectric couplings, and mismatch strain on the domain structure morphology in ferroelectric core-shell nanoparticles of spherical shape. We perform finite element modelling (FEM) for multiaxial ferroelectric nanoparticle cores covered with an elastically-isotropic soft or elastically-anisotropic rigid paraelectric shell, with and without mismatch strains. In the case of a core covered with a soft shell , the FEM results show that at room temperature a single polarization vortex with a dipolar kernel can be stable if the electrostriction coupling is relatively weak. With increasing anisotropic electrostriction coupling, the vortex disappears and is replaced by complex flux-closure structures. In contrast to this, FEM performed for a core covered with a rigid shell shows that, at room temperature, the anisotropic elastic properties of the shell can stabilize vortex-like structures with three flux-closure domains. The flexoelectric coupling leads to a noticeable curling of the flux-closure domain walls. A mismatch strain compensates the curling of the flux-closure domains in the core confined by the elastically-anisotropic rigid shell. Our analysis of the configuration of the polarization reveals different types of topological defects, namely Bloch point structures and Ising lines. Furthermore, we study the influence of the core radius on the temperature behavior of domain structure morphology, polarization value, and phase transition temperatures, and derive approximate analytical expressions to analyze the influence of the elastic properties of the shell as well as mismatch strain on the phase diagrams. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Materialia

  • ISSN

    1359-6454

  • e-ISSN

  • Volume of the periodical

    212

  • Issue of the periodical within the volume

    14 April 2021

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    116889

  • UT code for WoS article

    000657756300004

  • EID of the result in the Scopus database

    2-s2.0-85105694553