All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electric field control of three-dimensional vortex states in core-shell ferroelectric nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422893" target="_blank" >RIV/00216208:11320/20:10422893 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BbmSuY9O0P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BbmSuY9O0P</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.actamat.2020.09.003" target="_blank" >10.1016/j.actamat.2020.09.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electric field control of three-dimensional vortex states in core-shell ferroelectric nanoparticles

  • Original language description

    The fundamental question whether the structure of curled topological states, such as ferroelectric vortices, can be controlled by the application of an irrotational electric field is open. In this work, we studied the influence of irrotational external electric fields on the formation, evolution, and relaxation of ferroelectric vortices in spherical nanoparticles. In the framework of the Landau-Ginzburg-Devonshire approach coupled with electrostatic equations, we performed finite element modeling of the polarization behavior in a ferroelectric barium titanate core covered with a &quot;tunable&quot; paraelectric strontium titanate shell placed in a polymer or liquid medium. A stable two-dimensional vortex is formed in the core after a zero-field relaxation of an initial random or poly-domain distribution of the polarization, where the vortex axis is directed along one of the core crystallographic axes. Subsequently, sinusoidal pulses of a homogeneous electric field with variable period, strength, and direction are applied. The field-induced changes of the vortex structure consist in the appearance of an axial kernel in the form of a prolate nanodomain, the growth of the kernel, an increasing orientation of the polarization along the field, and the onset of a single-domain state. We introduced the term &quot;kernel&quot; to name the prolate nanodomain developed near the vortex axis and polarized perpendicular to the vortex plane. In ferromagnetism, this region is generally known as the vortex core. Unexpectedly, the in-field evolution of the polarization includes the formation of Bloch point structures, located at two diametrically opposite positions near the core surface. After removal of the electric field, the vortex recovers spontaneously; but its structure, axis orientation, and vorticity can be different from the initial state. As a rule, the final state is a stable three-dimensional polarization vortex with an axial dipolar kernel, which has a lower energy compared to the initial purely azimuthal vortex. The nature of this counterintuitive result is a significant gain of the negative Landau energy in the axial region of the vortex due to the formation of a kernel, which is only partially compensated by an increase in positive energy of the depolarization field, polarization gradient, and elastic stress for a vortex with a prolate single-domain kernel. The analysis of the torque and electrostatic forces acting on the core-shell nanoparticle in an irrotational electric field showed that the torque acting on the vortex with a kernel tends to rotate the nanoparticle in such way that the vortex axis becomes parallel to the field direction. The vortex (with or without a kernel) is electrostatically neutral, and therefore the force acting on the nanoparticle is absent for a homogeneous electric field, and nonzero for the field with a strong spatial gradient. The vortex states with a kernel possess a manifold degeneracy, appearing from three equiprobable directions of vortex axis, clockwise and counterclockwise directions of polarization rotation along the vortex axis, and two polarization directions in the kernel. This multitude of the vortex states in a single core is promising for applications of core-shell nanoparticles and their ensembles as multi-bit memory and related logic units. The rotation of a vortex kernel over a sphere, possible for the core-shell nanoparticles in a soft matter medium with controllable viscosity, may be used to imitate qubit features. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Materialia

  • ISSN

    1359-6454

  • e-ISSN

  • Volume of the periodical

    200

  • Issue of the periodical within the volume

    Sep

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    256-273

  • UT code for WoS article

    000580631600023

  • EID of the result in the Scopus database

    2-s2.0-85090837638