All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Martian Bow Shock and Magnetic Pileup Boundary Models Based on an Automated Region Identification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423275" target="_blank" >RIV/00216208:11320/20:10423275 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=S3mny7UOMH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=S3mny7UOMH</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2020JA028509" target="_blank" >10.1029/2020JA028509</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Martian Bow Shock and Magnetic Pileup Boundary Models Based on an Automated Region Identification

  • Original language description

    Empirical models of bow shock and magnetic pileup boundary locations are typically based on the identification of individual boundary crossings and their subsequent fitting by properly chosen dependences. Such an approach, however, requires a large set of identified crossings, whose compilation can be easily a source of a significant bias. Moreover, the method is inherently biased by the spacecraft orbit: the more time the spacecraft spends in a given region, the more likely it is for a crossing to be identified in there. We use a different approach based on an automated region identification and Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft data to derive empirical models of both the bow shock and magnetic pileup boundary locations around Mars. We use statistically known parameters in the solar wind, magnetosheath, and induced magnetosphere, along with the observed ratios of measured solar wind parameters, to automatically identify the region where the spacecraft is located at any given time. A simple empirical relation is then assumed for a boundary shape and location, and its free parameters are adapted to optimize the resulting model classification of individual data points. This procedure allows us to model both the bow shock and magnetic pileup boundary locations, reproducing successfully observed variations with the solar wind dynamic pressure, solar ionizing flux, and crustal magnetic fields. However, due to the sparse data coverage, the models are deemed unreliable beyond the terminator.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LTAUSA17070" target="_blank" >LTAUSA17070: Electromagnetic waves in planetary ionospheres and magnetospheres</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geophysical Research. Space Physics

  • ISSN

    2169-9380

  • e-ISSN

  • Volume of the periodical

    125

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    e2020JA028509

  • UT code for WoS article

    000595859400026

  • EID of the result in the Scopus database

    2-s2.0-85096461158