Martian bow shock and magnetic pileup boundary models based on machine learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484600" target="_blank" >RIV/00216208:11320/24:10484600 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5tHQJVvKhd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5tHQJVvKhd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asr.2024.03.030" target="_blank" >10.1016/j.asr.2024.03.030</a>
Alternative languages
Result language
angličtina
Original language name
Martian bow shock and magnetic pileup boundary models based on machine learning
Original language description
Traditional Martian bow shock and magnetic pileup (magnetopause) boundary models are based on the fitting of free parameters in a prescribed formula. The form of the formula, fitted data, and considered controlling parameters distinguish the individual models from each other. However, all these models have one thing in common: the shape of the boundary and the parametric dependence assumed are fixed by the prescribed formula. The fitted data set typically consists of individual identified boundary crossings. This approach can suffer from a significant bias, as the boundary crossings are more likely to be identified in regions where a spacecraft spends more time. In this study, we use an automated region classification of the data measured by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to solar wind, magnetosheath, or magnetosphere. This is achieved by applying the Support Vector Machine method to individual spacecraft half-orbits (from periapsis to apoapsis or vice versa). Two different models of the locations of the bow shock and magnetic pileup boundaries are then constructed based on neural networks: i) a model trained using the classified data, and ii) a model trained using individual identified boundary crossings. As compared to formal empirical modeling efforts, the neural network models do not assume any prescribed shape/distance formula. Optimal model parameterization (considering the solar wind dynamic pressure, solar ionizing flux, crustal magnetic field magnitude, Alfve<acute accent>n Mach number, and interplanetary magnetic field magnitude) is discussed and the model performance evaluated. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LUAUS23152" target="_blank" >LUAUS23152: Electrodynamics of magnetospheres and ionospheres of the Earth, Jupiter and Mars</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Space Research
ISSN
0273-1177
e-ISSN
1879-1948
Volume of the periodical
73
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
6298-6309
UT code for WoS article
001238205700001
EID of the result in the Scopus database
2-s2.0-85188747642