All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lotka-Volterra competition model on graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423396" target="_blank" >RIV/00216208:11320/20:10423396 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j0Mt-lY-rU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j0Mt-lY-rU</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/19M1276285" target="_blank" >10.1137/19M1276285</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lotka-Volterra competition model on graphs

  • Original language description

    We consider a model of two competing species of Lotka-Volterra type with diffusion (migration), where the spatial domain is an arbitrary finite graph (network). Depending on the parameters of the model, we describe the spatially homogeneous stationary states and their stability, discuss the existence and number of spatially heterogeneous stationary states, and study the asymptotic behavior of solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Applied Dynamical Systems

  • ISSN

    1536-0040

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    38

  • Pages from-to

    725-762

  • UT code for WoS article

    000545964300001

  • EID of the result in the Scopus database

    2-s2.0-85094148629