Lotka-Volterra competition model on graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423396" target="_blank" >RIV/00216208:11320/20:10423396 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j0Mt-lY-rU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j0Mt-lY-rU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1276285" target="_blank" >10.1137/19M1276285</a>
Alternative languages
Result language
angličtina
Original language name
Lotka-Volterra competition model on graphs
Original language description
We consider a model of two competing species of Lotka-Volterra type with diffusion (migration), where the spatial domain is an arbitrary finite graph (network). Depending on the parameters of the model, we describe the spatially homogeneous stationary states and their stability, discuss the existence and number of spatially heterogeneous stationary states, and study the asymptotic behavior of solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Applied Dynamical Systems
ISSN
1536-0040
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
725-762
UT code for WoS article
000545964300001
EID of the result in the Scopus database
2-s2.0-85094148629