Massera's theorems for various types of equations with discontinuous solutions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423398" target="_blank" >RIV/00216208:11320/20:10423398 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=y_hLDhTQVu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=y_hLDhTQVu</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.08.043" target="_blank" >10.1016/j.jde.2020.08.043</a>
Alternative languages
Result language
angličtina
Original language name
Massera's theorems for various types of equations with discontinuous solutions
Original language description
We present new Massera-type theorems for various types of equations with periodic right-hand sides. We deal with generalized ordinary differential equations, measure differential equations, impulsive equations (all of which might have discontinuous solutions), as well as dynamic equations on time scales. For scalar nonlinear equations, we find sufficient conditions guaranteeing that each bounded solution is asymptotic to a periodic solution. For linear systems, we show that the existence of a bounded solution implies the existence of a periodic solution. We include some examples to illustrate our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
269
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
11667-11693
UT code for WoS article
000579362100037
EID of the result in the Scopus database
2-s2.0-85091391187