All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Massera's theorems for various types of equations with discontinuous solutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423398" target="_blank" >RIV/00216208:11320/20:10423398 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=y_hLDhTQVu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=y_hLDhTQVu</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2020.08.043" target="_blank" >10.1016/j.jde.2020.08.043</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Massera's theorems for various types of equations with discontinuous solutions

  • Original language description

    We present new Massera-type theorems for various types of equations with periodic right-hand sides. We deal with generalized ordinary differential equations, measure differential equations, impulsive equations (all of which might have discontinuous solutions), as well as dynamic equations on time scales. For scalar nonlinear equations, we find sufficient conditions guaranteeing that each bounded solution is asymptotic to a periodic solution. For linear systems, we show that the existence of a bounded solution implies the existence of a periodic solution. We include some examples to illustrate our results.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    269

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

    11667-11693

  • UT code for WoS article

    000579362100037

  • EID of the result in the Scopus database

    2-s2.0-85091391187