All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON VARIANTS OF ARNOLD CONJECTURE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423852" target="_blank" >RIV/00216208:11320/20:10423852 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ni.MzCcHQb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ni.MzCcHQb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/AM2020-5-277" target="_blank" >10.5817/AM2020-5-277</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON VARIANTS OF ARNOLD CONJECTURE

  • Original language description

    In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon&apos;s version of Arnold conjecture for contactomorphisms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archivum Mathematicum [online]

  • ISSN

    1212-5059

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    10

  • Pages from-to

    277-286

  • UT code for WoS article

    000592770500002

  • EID of the result in the Scopus database

    2-s2.0-85096782488