How Many Conjectures Can You Stand? A Survey
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915020" target="_blank" >RIV/49777513:23520/12:43915020 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00373-011-1090-6" target="_blank" >http://dx.doi.org/10.1007/s00373-011-1090-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-011-1090-6" target="_blank" >10.1007/s00373-011-1090-6</a>
Alternative languages
Result language
angličtina
Original language name
How Many Conjectures Can You Stand? A Survey
Original language description
We survey results and open problems in hamiltonian graph theory centered around two conjectures of the 1980s that are still open: every 4-connected claw-free graph (line graph) is hamiltonian. These conjectures have lead to a wealth of interesting concepts, techniques, results and equivalent conjectures.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GRAPHS AND COMBINATORICS
ISSN
0911-0119
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
1
Country of publishing house
JP - JAPAN
Number of pages
19
Pages from-to
"57?75"
UT code for WoS article
000298106700002
EID of the result in the Scopus database
—