All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cubic Cayley Graphs of Girth at most 6 and Their Hamiltonicity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956167" target="_blank" >RIV/49777513:23520/19:43956167 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1034/660" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1034/660</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cubic Cayley Graphs of Girth at most 6 and Their Hamiltonicity

  • Original language description

    Thomassen&apos;s conjecture states that a cubic graph with sufficiently large cyclic connectivity is hamiltonian. Even the following strong conjecture could hold: A cyclically 7-connected cubic graph is hamiltonian, or it is the Coxeter graph. Assuming the conjecture holds true, to prove the hamiltonicity of cubic Cayley graphs it is sufficient to examine cubic Cayley graphs of girth at most 6. Motivated by this, we characterise cubic Cayley graphs of girth at most six and identify few &quot;hard families&quot; of cubic Cayley graphs of small girth for which we are not able to verify whether they are hamiltonian.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

  • ISSN

    0231-6986

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    9

  • Pages from-to

    351-359

  • UT code for WoS article

    000472963700015

  • EID of the result in the Scopus database

    2-s2.0-85071297512