Cubic Cayley Graphs of Girth at most 6 and Their Hamiltonicity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956167" target="_blank" >RIV/49777513:23520/19:43956167 - isvavai.cz</a>
Result on the web
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1034/660" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1034/660</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Cubic Cayley Graphs of Girth at most 6 and Their Hamiltonicity
Original language description
Thomassen's conjecture states that a cubic graph with sufficiently large cyclic connectivity is hamiltonian. Even the following strong conjecture could hold: A cyclically 7-connected cubic graph is hamiltonian, or it is the Coxeter graph. Assuming the conjecture holds true, to prove the hamiltonicity of cubic Cayley graphs it is sufficient to examine cubic Cayley graphs of girth at most 6. Motivated by this, we characterise cubic Cayley graphs of girth at most six and identify few "hard families" of cubic Cayley graphs of small girth for which we are not able to verify whether they are hamiltonian.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
ISSN
0231-6986
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
9
Pages from-to
351-359
UT code for WoS article
000472963700015
EID of the result in the Scopus database
2-s2.0-85071297512