Are Multilingual Neural Machine Translation Models Better at Capturing Linguistic Features?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424330" target="_blank" >RIV/00216208:11320/20:10424330 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ar.-9Myndf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ar.-9Myndf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/00326585.009" target="_blank" >10.14712/00326585.009</a>
Alternative languages
Result language
angličtina
Original language name
Are Multilingual Neural Machine Translation Models Better at Capturing Linguistic Features?
Original language description
We investigate the effect of training NMT models on multiple target languages. We hypothesize that the integration of multiple languages and the increase of linguistic diversity will lead to a stronger representation of syntactic and semantic features captured by the model. We test our hypothesis on two different NMT architectures: The widely-used Transformer architecture and the Attention Bridge architecture. We train models on Europarl data and quantify the level of syntactic and semantic information discovered by the models using three different methods: SentEval linguistic probing tasks, an analysis of the attention structures regarding the inherent phrase and dependency information and a structural probe on contextualized word representations. Our results show evidence that with growing number of target languages the Attention Bridge model increasingly picks up certain linguistic properties including some syntactic and semantic aspects of the sentence whereas Transformer models are largely unaffe
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-02196S" target="_blank" >GA18-02196S: Linguistic Structure Representation in Neural Networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The Prague Bulletin of Mathematical Linguistics
ISSN
0032-6585
e-ISSN
—
Volume of the periodical
115
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
143-162
UT code for WoS article
—
EID of the result in the Scopus database
—