All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Disentangled Semantic Representations for Zero-Shot Cross-Lingual Transfer in Multilingual Machine Reading Comprehension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AE55LS5DL" target="_blank" >RIV/00216208:11320/22:E55LS5DL - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2022.acl-long.70" target="_blank" >https://aclanthology.org/2022.acl-long.70</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.acl-long.70" target="_blank" >10.18653/v1/2022.acl-long.70</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Disentangled Semantic Representations for Zero-Shot Cross-Lingual Transfer in Multilingual Machine Reading Comprehension

  • Original language description

    Multilingual pre-trained models are able to zero-shot transfer knowledge from rich-resource to low-resource languages in machine reading comprehension (MRC). However, inherent linguistic discrepancies in different languages could make answer spans predicted by zero-shot transfer violate syntactic constraints of the target language. In this paper, we propose a novel multilingual MRC framework equipped with a Siamese Semantic Disentanglement Model (S2DM) to disassociate semantics from syntax in representations learned by multilingual pre-trained models. To explicitly transfer only semantic knowledge to the target language, we propose two groups of losses tailored for semantic and syntactic encoding and disentanglement. Experimental results on three multilingual MRC datasets (i.e., XQuAD, MLQA, and TyDi QA) demonstrate the effectiveness of our proposed approach over models based on mBERT and XLM-100.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

  • ISBN

    978-1-955917-25-4

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    991-1000

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

  • Event location

    Dublin, Ireland

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article